
AUST/EEE

Ahsanullah University of Science and Technology

Department of Electrical and Electronic Engineering

LABORATORY MANUAL

FOR

ELECTRICAL AND ELECTRONIC SESSIONAL COURSE

Student Name :

Student ID :

Course no : EEE 2110

Course Title : Course Title: Programming Language Lab

For the students of

Department of Electrical and Electronic Engineering

2nd Year, 1st Semester

AUST/EEE

 LAB NO : 01

 LAB NAME: Introduction to the Local Computer System and the Execution of First C++

 Program.

 Objective:

The purpose of this laboratory session is to introduce you to the computer system that

you will use in the remaining sessions. The materials supplied during this period will teach you

to:

1. Gain access to the machine.

2. First time handling with Visual C++ 8.0

3. Enter a C++ program and execute it.

Gaining Access to the Machine

Those of you using this manual may be working with a wide variety of computer equipment. Some

may use individual autonomous machines, others may use individual machines that share

resources over a network, while others may use remote terminals connected to a central computing

facility that serves many users at once. No matter what the machine, however, your first contact

with the computer will be through its operating system—a program that coordinates the activities

of the machine and performs tasks as directed by the machine's user (or users). In the all lab

sessions, your operating system will be Windows.

The Program Preparation Process

The steps required to develop programs using the C++ language will depend on the

computer system being used. However, some features of the process are common to all systems. As

a first step, the programmer uses a program called an editor to type a C++ language version of the

program being developed. This editor may be a stand-alone utility program or a part of an

integrated software development package. Once the program has been typed, it is usually saved as

a file in mass storage. This version of the program is known as the source program because it is the

initial, or source, version of the program. It is this version to which you will return when alterations

to the program are required.

A program in its source form cannot be executed by the computer; it must first be translated into

the machine's own low-level language. This translation process is performed by a program

known as a translator (or compiler).

The compiler`s working procedure is shown in flow chart.

2

AUST/EEE

Mirosoft Visual Studio 2008

Microsoft Visual Studio 2008 is a software development environment that allows a programmer

to write, compile, link, execute, test, and debug C++ programs.

1. Creating a Folder:

a.Make a new folder on the desktop.

b.Name it as “EEE2110_[yourgroup number]”

Fig: Compiler`s Working Principle

3

AUST/EEE

2. Launching Microsoft Visual Studio 2008:

a.First make a folder on the desktop. Name it as EEE2110.

b.Click on Start →Programs →Microsoft Visual Studio 2008 .

 c. Visual C++ window will be appeared.

3.Creating a New Project:

a.Click on File →click on New →click on Project.

b.A new popup window will be appeared.

c. i.Select Win32 under the headline of Visual C++ of project types.

ii. Select Win32 Console Application under the headline of Visual Studio installed templates of

templates types.

iii. Give a project Name for an example helloworld and give a location in that window and click OK.

d. A win32 Application Wizard will be appeared.

Click Next →select Empty Project in Additional options →click Finish.

 4.Creating a file:

a. Right click on the Source Files of your project (for example Helloworld) and click Add→click New

Item.

 b. A new window will be appeared.

i.In that window select Visual C++ listed in Categories and select C++ File(.cpp) listed in

Templates.

ii. Give a Name of the file for an example lab01 and click Add.

c. A new window will be appeared named your file name.cpp for example lab01.cpp. This file

is text editor where you can write and edit your codes.

 5.Building and running a Project:

a. After finishing writing your program on the text editor to build the program

Click on Build in the toolbar→click Build solution.

b. If it compiles successfully, the window at the bottom of your screen will display-

1>Helloworld- 0 errors(s) , 0 warnings(s)

-----------------Build: 1 succeeded, 0 failed

c. To execute your code click on Tools →click Customize→click Commands→select Debug listed in

commands→select and drag Start Without Debugging to the toolbar and close the Customize window.

4

AUST/EEE

d. By clicking Start Without Debugging in the toolbar a window should popup with the output from your
program.

 6.Debugging C++ Source Code:

a.If you have compiler errors, click the mouse in the window at the bottom of your screen. To see

the error message first, scroll to the top of that window. If you doubleclick on an error message, a

blue arrow in the coding window will identify the statement corresponding to the error message.

b.Return to the coding window and correct the error.

c. Recompile the program.

Example: 01

#include<iostream>

using namespace std;

int main()

{cout<< “ Hello World!!” <<endl;

 return 0;
 }

 Output of the program:

5

AUST/EEE

 Post-Laboratory Problems

1. Write a program that displays five of your favorite colors name in (i) 1 line (ii) 5 lines.

2. What is the error in the following program? Write down the exact output of the following

program after correcting the error.

include <iostream.h>

int main()

{

cout << "Patriot " << "G" << "a" << "m" << "e" << "\n"; cout

<< "\t Written" << " " << "B" << "y" << "\n";

cout << "\t\t Tom" << " " << "C" << "lancy\n\n\n";

return 0;

}

3. What is the error in the following program? Write down the exact output of the following

program after correcting the error.

#include <iostream>

int main()

 // prints "Hello, World!":
cout << "Hello, World!\n"

}

4. Write and run a program that prints the sum, difference, product, quotient, and remainder of

two integers that are input interactively.

5.Write and run a program that prints the first letter of your last name as a block letter in a7 ×7

grids of stars.

6

AUST/EEE

LAB NO : 02

 LAB NAME: Introduction of variables, cin function and simple Arithmetic Operators,

 Composite Assignment Operator, Increment & Decrement.

Objective:

The purpose of this laboratory session is to introduce you to the variables that are used in C++

with some common applications as well as cin function. Also some applications simple
arithmetic operations are introduced.

Variables:

Variables are the lifeblood of any programming language. Without them, the results of a program
would always be the same. This is because variables are the "mailboxes" in which data necessary
for program execution to run. You can store many kinds of data in these "mailboxes." Integers,
Floating-point numbers, and Characters are a few. The following program is simply going to set a
variable and print it out.
// prints "n = 44":

#include <iostream.h>

int main()

{

int n;

n = 44;

cout << "n = " <<n<<endl;

return 0;

}

After that you see a new statement that looks like int n; This declares a variable named n of

type int. int means integer. An integer is a type which can only contain non-floating point

values. In other words, only whole numbers. Other typesof variables and their keywords are:

Integer int
Long integer long int
Short integer short int
Character char
Floating Point float

Then the line n = 44; is commonly known as initialization of variable. This line simply

assigns the value of 44 to n. The "mailbox" of the variable now has a letter that says "44".

The = operator is called the assignment operator. It assigns the value of whatever is on the

right to whatever is on the left. This data can later be used in our program for output, as the

next line indicates: cout << "n = " << n << endl; This line tells the computer to output

the value stored in n (44) with a text “n= ”and then an end-of-line character. It is

done the same way with most variables; simply append an extra << operator for each value
you wish to attach.

7

AUST/EEE

The Input Operator:

In C++, input is almost as simple as output. The input operator “>>” [also known as get

operator /extraction operator

] works like the output operator “<<”. The function for input is
“cin”. Following program will clarify the operation of cin:

Example 01:

#include <iostream.h>

int main()

{

int m, n;

cout << "Enter two integers (use SPACE to separate): ";

cin >> m >> n;

cout << "m = " << m << ", n = " << n <<endl;

double x, y, z;

cout<< "Enter three decimal numbers (use SPACE to separate): ";

cin >> x >> y >> z;

cout << "x = " << x << ", y = " << y << ", z = " << z <<endl;

char c1, c2, c3, c4;

cout << "Enter four characters (use SPACE to separate): ";

cin >> c1 >> c2 >> c3 >> c4;

cout << "c1 = " << c1 << ", c2 = " << c2 << ", c3 = " << c3;

cout << ", c4 = " << c4 << endl;

return 0;

}

Arithmetic Operators:

The following two examples will show the exact use of different types of arithmetic

operators:

Example 2 :

/* Integer Arithmetic

Testing the operators +, -, *, /, and % */

#include <iostream.h>

int main()

{

int

m=54;

int

n=20;

cout << "m = " << m << " and n = " << n << endl;

cout << "m+n = " << m+n <<endl;

cout << "m-n = " << m-n <<endl;

cout << "m*n = " << m*n <<endl;

cout << "m/n = " << m/n <<endl;

cout << "m%n = " << m%n <<endl;

return 0;

}

8

AUST/EEE

Example 3:

/* Floating-Point Arithmetic

Testing the floating-point operators +, -, *, and / */

#include <iostream.h>

int main()

{

double

x=54.0;

double

y=20.0;

cout << "x = " << x << " and y = " << y <<endl;

cout << "x+y = " << x+y <<endl;

cout << "x-y = " << x-y <<endl;

cout << "x*y = " << x*y <<endl;

cout << "x/y = " << x/y <<endl;

cout<< ”x%y = “ << x%y <<endl;

return 0;

}

Example 4:

To observe the storage sizes of fundamental data types compile, build and run the following

program. Write the observed output.

#include <iostream.h>

int main()

{

cout << "Number of bytes used:\n";

cout << "\t char: " << sizeof(char) <<endl;

cout << "\t short: " << sizeof(short) <<endl;

cout << "\t int: " << sizeof(int) <<endl;

cout << "\t long: " << sizeof(long) << endl;

cout << "\t unsigned char: " << sizeof(unsigned char) <<endl;

cout << "\tunsigned short: " << sizeof(unsigned short) <<endl;

cout << "\t unsigned int: " << sizeof(unsigned int) <<endl;

cout << "\t unsigned long: " << sizeof(unsigned long) <<endl;

cout << "\t signed char: " << sizeof(signed char) <<endl;

cout << "\t float: " << sizeof(float) <<endl;

cout << "\t double: " << sizeof(double) <<endl;

cout << "\t long double: " << sizeof(long double) <<endl;

return 0;

}

Example 5:

At its closest point to Earth, Mars is approximately 34,000,000 miles away. Assuming there is

someone on Mars that you want to talk with, what is the delay between the time a radio signal

leaves Earth and the time it arrives on Mars? This project creates a program that answers this

question. Recall that radio signals travel at the speed of light, approximately 186,000 miles per

second. Thus, to compute the delay,you will need to divide the distance by the speed of light.

Display the delay in terms of seconds and also in minutes.

9

AUST/EEE

#include<iostream>

using namespace std;

int main()

{

double distance;

double lightspeed;

double delay;

double delay_in_min;

distance = 34000000.0; // 34,000,000 miles

lightspeed = 186000.0; // 186,000 per second

delay = distance / lightspeed;

cout << "Time delay when talking to Mars: " << delay << " seconds.\n";

delay_in_min = delay / 60.0;

cout << "This is " << delay_in_min << " minutes.";

return 0;

}

Compile and run the program. The following result is displayed:

Time delay when talking to Mars: 182.796 seconds.

This is 3.04659 minutes.

 Increment and Decrement:

The values of integral objects can be incremented and decremented with the ++ and --

operators, respectively. Each of these operators has two versions: a "pre" version and a "post"

version. The "pre" version performs the operation (either adding 1 or subtracting 1) on the

object before the resulting value is used in its surrounding context. The "post" version

performs the operation after theobject's current value has been used.

Both the increment and decrement operators can either precede (prefix) or follow (postfix)

the operand.
For example,

x = x + 1;can be written as
++x; // prefix form

or as
x++; // postfix form

In this example, there is no difference whether the increment is applied as a prefix or a

postfix.However, when an increment or decrement is used as part of a larger expression, there

is an importantdifference. When an increment or decrement operator precedes its operand,

C++ will perform theoperation prior to obtaining the operand‟s value for use by the rest of the

expression. If the operatorfollows its operand, then C++ will obtain the operand‟s value

before incrementing or decrementing it.
Consider the following:

x = 10; y = ++x;

In this case, y will be set to 11. However, if the code is written as

x = 10; y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it happens.

There aresignificant advantages in being able to control when the increment or decrement

operation takes place.

10

AUST/EEE

Example 6:

#include<iostream.h>

int main()

{

int m,n;

m=44;

n=m++;

cout<<"the value of m\t"<<m<<"\t"<<"the value of n\t"<<n<<endl;

m=44;

n=++m;

cout<<"the value of m\t"<<m<<"\t"<<"the value of n\t"<<n<<endl;

m=44;

n=m--;

cout<<"the value of m\t"<<m<<"\t"<<"the value of n\t"<<n<<endl;

m=44;

n=--m;

cout<<"the value of m\t"<<m<<"\t"<<"the value of n\t"<<n<<endl;

return 0;

}

 Composite assignment operators:

The standard assignment operator in C++ is the equals sign =. In addition to this operator,

C++ alsoincludes the following composite assignment operators : +=, -= , *=, /=, and %=.

When appliedto a variable on the left, each applies the indicated arithmetic operation to it
using the value of theexpression on the right .

Example 7:

Applying Composite Arithmetic Assignment Operators
include<iostream.h>
int main()

{int n=22;

cout << "n = " <<n<<endl;

n +=9; // adds 9 to n

cout << "After n += 9, n = " <<n<<endl;

n -= 5; // subtracts 5 from n

cout << "After n -= 5, n = " <<n<<endl;

n *= 2; // multiplies n by 3

cout « "After n *= 2, n = " <<n<<endl;

n /= 3; // divides n by 9

cout << "After n /= 3, n = " <<n<<endl;

n %= 7; // reduces n to the remainder from dividing by 4

cout << "After n %= 7, n = " <<n<<endl;

return 0;

}

The output would be:

n = 22
After n + = 9, n = 31

After n -= 5, n = 26

After n *= 2, n = 52

After n /= 3, n = 17

After n %= 7, n = 3

11

AUST/EEE

 Type conversions:

C++ also converts integral types into floating point types when they are expected. For

example,

int n = 22;

float x = 3.14159;

x += n; // the value 22 is automatically converted to 22.0
 cout << x - 2 << endl; // value 2 isautomatically converted to 2.0

Converting from integer to float like this is what one would expect and is usually taken for

granted.But converting from a floating point type to an integral type is not automatic.

In general, if T isone type and v is a value of another type, then the expression T(v)

converts v to type T. This is called type casting. For example, if expr is a floating-point

expression and n is a variable of type int, then n = int{expr);converts the value of

expr to type int and assigns it to n. The effect is to remove the real number's fractional
part, leaving only its whole number part to be assigned to n. For example, 2.71828 would be

converted to 2. Note that this is truncating, not rounding.

Example 8:

This program casts a double value into int value:

void main()

{ double v =1234.56789;

int n = int(v);

cout << "V = " <<v<< ",n=" <<n<<endl;}

v = 1234.57, n = 1234

The double value 1234.56789 is converted to the int value 1234.

When one type is to be converted to a "higher" type, the type case operator is not needed.
This iscalled type promotion. Here's a list of promotion from char all the way up to double:

Char< short <int < long< float <double

Note that type casting and promotion convert the type of the value of a variable or
expression, but it does not change the type of the variable itself.

Example 9:

This program promotes a char to a short to an int to a float to a double:

void main()

{char c= „A‟ ;
cout<< “char c=”<<c<<endl;
short k= c ;

cout<< “short k=”<<k<<endl;
int m= k ;

cout<< “int m=”<<m<<endl;
long n= m ;
cout<< “long n=”<<n<<endl;
float x= n ;
cout<< “float x=”<<x<<endl;
double y= x;
cout<< “double y=”<<y<<endl;
}

12

AUST/EEE

Numeric overflow:

On most computers the long int type allows 4,294,967,296 different values. That'sa lot of values,

butit's still finite. Computers are finite, so the range of any type must also be finite. But in

mathematicsthere are infinitely many integers. Consequently, computers are manifestly prone to

error when theirnumeric values become too large. That kind of error is
called numeric overflow.

Example 10:

#include<iostream.h>

int main()

// prints n until it overflows:

int n=1000;

cout << "n = " <<n<<endl;

n *= 1000; // multiplies n by 1000

cout << "n = " <<n<<endl;

n *= 1000; // multiplies n by 1000

cout << "n = " <<n<<endl;

n *= 1000; // multiplies n by 1000

cout << "n = " <<n<<endl;

return 0;

}

n = 1000 n = 1000000 n = 1000000000 n = -727379968 ... This shows that the computer that ran

this program cannot multiply 1,000,000,000 by 1000 correctly. Integer overflow "wrapsaround"

to negative integers. Floating-point Overflow “sinks' into the abstract notion of infinity.

Laboratory Problems:

1. Write a program for a calculator that will take two decimal numbers from a user. It‟ll perform

the addition, subtraction and multiplication; and then the calculation will be shown on the output

screen.

2.Write a program that asks the user to type the width and the length of a rectangle and then

outputs to the screen the area and the perimeter of that rectangle.

3.Write a program that converts centimeters to inches. [Hints: 1 cm = .393 inch.]

4.Write a program that convert any temperature from Celsius scale to Fahrenheit scale. [Hints:

relation between Celsius and Fahrenheit isC=5/9×(F-32); where F is Fahrenheit and C is Celsius.]

5.Write a program for Floating-point Overflow.

6.Write a program that implements the quadratic formula to solve quadratic equations.
[HINTS] #include <cmath> // defines the sqrt() function

cout « "The equation is: " << a << "*x*x + " << b « "*x + "<< c << " = 0" << endl;

7.You will create a program that computes the regular payments on a loan, such as a car loan. Given

the principal, the length of time, number of payments per year, and the interest rate, the program will

compute the payment.

13

AUST/EEE

LAB NO : 03

LAB NAME : Conditional statements.

Objective:

The purpose of this laboratory is to know the conditional statements i.e. if, if-else,
switch, conditional operator, compound conditions.

 If statement:

The if statement allows the programmer to change the logical order of a program; i.e., it

makes theorder inwhich the statements are executed differ from the order in which they are

listed in the program.

The if-then statement uses a Boolean expression to determine whether to execute a statement
or to skip it. Hereis the syntax template: if (Expression) Statement

The expression in parentheses can be of any simple data type. Almost without exception, this

will be a logical(Boolean) expression; if not, its value is implicitly coerced to type bool

(nonzero value means true, zero valuemeans false). Now, let's look at the following statement:

if (number < 0)

number = 0;

sum = sum + number ;

The expression (number < 0) is evaluated. If the result is true, the statement number = 0; is

executed. If the

result is false, the statement is skipped. In either case,the next statement to be executed is

sum = sum + number ;

Example 01:

 // this program finds the minimum of three integers.

14

AUST/EEE
Here is an example

Example 02:

#include<iostream>

#include<cstdlib>

using namespace std;

void main()

{

int magic;//magic number

int guess;//user's guess

magic=rand();//get a random number

cout<<"Enter your guess: ";

cin>>guess;

if(guess==magic) cout<<"**Right Guess**";

//If the guess matches the right number then the messege is displayed.

}

This program uses the „if‟ statement to determine whether the user‟s guess matches the magic

number. If it does, the message is printed on the screen. Taking the Magic Number program

further, the next version uses the else to print a message when the wrong number is picked:

 Example 03:

#include<iostream>

#include<cstdlib>

using namespace std;

void main()

{

int magic;//magic number

int guess;//user's guess

magic=rand();//get a random number

cout<<"Enter your guess: ";

cin>>guess;

if(guess==magic) cout<<"**Right Guess**";

//If the guess matches the right number then the messege is

displayed.

else cout<<"Sorry You are wrong";

}

 if-else Statement:

if-else statement uses a Boolean expression to determine which one of the two

statements to execute.

Here is the syntax template:

if (Expression)

Statement1A

else

Statement1B

The expression in parentheses will be evaluated with the result of true or false.

15

AUST/EEE

 Nested if Statement:

An if-then statement uses Boolean expression to determine whether to execute or skip a

statement. An if-thenelse statement uses a Boolean expression to determine which one of the

two statements to execute. The statements to be executed or skipped could be simple

statements or compound statements (blocks). They also can be an if Statement. An if

statement within another if statement is called a nested if statement.The following example is

a nested if statement.

 Example 04:

#include<iostream>

 #include<cstdlib>

using namespace std;

void main()

{

int magic;//magic number

 int guess;//user's guess

 magic=rand();//get a random number

cout<<"Enter your guess: ";

cin>>guess;

if(guess==magic)

{ cout<<"**Right Guess**\n";

cout<<magic<< is the number\n";

 }

 else

 {cout<<"Sorry You are wrong";

 if(guess>magic)

 cout<<"Your guess is too high";

 else cout<<"Your guess is too low.\n”;

 }

 }

Nested if…else statement:

Example 05:

// to find the minimum of three integers.

#include<iostream>

using namespace std;

16

AUST/EEE

The switch statement:

The switch statement is a selection statement that can be used instead of a series of if-then- else statements.
Alternative statements are listed with a switch label in front of each. A switch label is either a case label or the
word default. A case label is the word case followed by a constant expression. An integral expression is called a
switch expression and is used to match one of the values on the case labels. The statement associated with the
value that is matched is the statement that is executed. Execution then continues sequentially from the matched
label until the end of the switch statement is encountered or a break statement is encountered. Here is the syntax
template for the Switch statement,

integral or enum expression is an expression of integral type —char, short, int, long, bool or of enum

type which will be discussed later. In a case label, constant expressionis an integral or enum

expression whose operands must be literal or named constants.

Now let's look at the following C++ code:

Example 06:

#include<iostream>

using namespace std;

void main()

{

cout<<"\t****MATH OPERATION****"<<endl;

cout<<"\t."<<endl;
cout<<"\t[1] Addition "<<endl;

cout<<"\t[2] Subtraction"<<endl;

cout<<"\t[3] Multiplication"<<endl;

cout<<"\t[4]Division"<<endl;

float num1,num2;

cout<<"Enter frist number";

cin>>num1;

cout<<"Enter second number"; cin>>num2;

int choice;

cout<<"Enter your choice[1/2/3/4]:";

cin>>choice;

float result;

switch(choice)

{

case 1: result=num1+num2;cout<<"Sum="<<result;break;

case 2: result=num1-num2;cout<<"Sub="<<result;break;

case 3: result=num1*num2;cout<<"Mul="<<result;break;

case 4: result=num1/num2;cout<<"Div="<<result; break;

default : cout<<"Invalid choice"<<endl;

}

}

 THE CONDITIONAL EXPRESSION OPERATOR

 C++ provides a special operator that often can be used in place of the if...else statement.

It is called the conditional expression operator. It uses the ? and the : symbols in this syntax:

condition ? expression1 : expression2

It is a ternary operator; i.e., it combines three operands to produce a value. That resulting value is either the value of
expression1 or the value of expression2 , depending upon the Boolean value of the condition. For example, the
assignment

min = (x<y ? x : y) ; // finds the minimum of two integers.

17

AUST/EEE

Example 07:

#include<iostream.h>

int main()

{int m,n;

cout << "Enter two integers: ";

cin >> m >> n;

cout << (m<n ? m : n) << " is the minimum." << endl;

return 0;

}

 Example 08:

 // Finds the minimum of three integers.

 #include<iostream>

 using namespace std;

 int main()

 {int a,b,c;

 cout << "Enter two integers: ";

 cin>>a>>b>>c;

 int min=(a<b?(a<c?a:c):(b<c?b:c));

 cout<< “minimum number=”<<min<<endl;

 }

 Compound conditions:

18

AUST/EEE

Example 09:

//to find the minimum of three integers.

#include<iostream>
using namespace std;
void main()

Laboratory Problems:

1. Write a program to find the roots of a quadratic equation including complex solution

2. An AC power supply of V volts is applied to a circuit load with impedance of Z (Ø) with
currentI. Wrote a program to Display the real power P, the reactive power R, the apparent power
Sand the power factor PFof the load. Test the programwith a voltage of 120 volts and an
impedance of 8 ohms at 30degrees{Hints : for cos and sin function use <cmath>].

3.Write and run a program that reads the user‟s age and then prints “You are a child.” if the

age < 18, “You are an adult.” if 18 <age < 65, and “You are a senior citizen.” if age >65.

4.Modify the example of the switch statement.

19

AUST/EEE

LAB NO : 04

Objective:

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the while statement, the do..while statement, and the for statement.
Iteration statements are also called loops because of their cyclic nature.

THE while STATEMENT
The syntax for the while statement is
while (condition) statement;

where condition is an integral expression and statement is any executable statement. If the
value of the expression is zero (meaning “false”) then the statement is ignored and program ex-
ecution immediately jumps to the next statement that follows the while statement. If the value
of the expression is nonzero (meaning “true”) then the statement is executed repeatedly until
the expression evaluates to zero. Note that the condition must be enclosed by parentheses.

Example :
This program computes the sum of reciprocals s = 1 + 1/2 + 1/3 + + 1/n, where n is the
smallest integer for which n ≥s:

#include<iostream.h>
int main()
{ int bound;
cout << "Enter a positive integer: ";
cin >> bound;
double sum=0.0;
int i=0;
while (sum < bound)
sum += 1.0/++i;
cout << "The sum of the first " << i << " reciprocals is " << sum << endl;
return 0;
}
The Fibonacci Numbers:
The Fibonacci numbers F0 , F1, F2 , F3, ... are defined recursively by the equations
For example, letting n = 2 in the third equation yields
F2 = F2–1 + F2–2 = F1 + F0 = 0 + 1 = 1 Similarly, with n = 3,
F3 = F3–1 + F3–2 = F2 + F1 = 1 + 1 = 2 and with n = 4,
F4 = F4–1 + F4–2 = F3 + F2 = 2 + 1 = 3
The first ten Fibonacci numbers are shown

LAB NAME : Iterations

20

AUST/EEE

Example:

#include<iostream.h>
int main()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0,1";
long f0=0,f1=1;
while (true)
{ long f2 = f0 + f1;

 if (f2 > bound) break; // terminates the loop immediately
cout << "," << f2;

 f0 = f1;
 f1 = f2;
 }
}
Do yourself:

1. Write a program to calculate sum of numbers until a negative number is keyed.
2. Write a program to test a number if it is prime number or not.(using while loop)
3. write a program to find the sum=1+3+5+…+n

THE do..while STATEMENT
The syntax for the do..while statement is
do
 {statement
 } while (condition);
where condition is an integral expression and statement is any executable statement. It
repeatedly executes the statement and then evaluates the condition until that condition
evaluates to false. The do..while statement works the same as the while statement except
that its condition is evaluated at the end of the loop instead of at the beginning. This means that
any control variables can be defined within the loop instead of before it. It also means that a
do...while loop will always iterate at least once, regardless of the value of its control condition

Example1

#include<iostream>
using namespace std;
void main()
{
int num,digit;

cout<<"\nEnter your number";
cin>>num;
cout<<"\nThe number in reverse
order is :";
do
{

 digit=num%10;
 cout<<digit;
 num/=10;
}while(num!=0);

}

Output:
Enter your number 4567
The number in reverse order is 7654…

Example 2
#include<iostream>
using namespace std;
void main()
{
int num,digit,sum=0;
int actnum;

cout<<"\nEnter your number";
cin>>num;
actnum=num;
do
{

 digit=num%10;

 num/=10;
 sum+=digit;
}while(num!=0);
cout<<"\nSum of Digits of the

number "<<actnum<<"is"<<sum;
Output:
Enter your number 4567
Sum of Digits of the number 4567 is 22

21

AUST/EEE

Do yourself:
1. Find the factorial of a given number
2. Find the sum and average of the given numbers using the do..while loop.
3. Find the sum of the even numbers using do..while loop

THE for STATEMENT
The syntax for the for statement is
for (initialization; condition; update) statement;
where initialization, condition, and update are optional expressions, and statement is
any executable statement. The three-part (initialization; condition; update) controls the loop. The
initialization expression is used to declare and/or initialize control variable(s) for the loop;
it is evaluated first, before any iteration occurs. The condition expression is used to determine
whether the loop should continue iterating; it is evaluated immediately after the
initialization; if it is true, the statement is executed. The update expression is used to
update the control variable(s); it is evaluated after the statement is executed. So the
sequence of events that generate the iteration are:
1. evaluate the initialization expression;
2. if the value of the condition expression is false, terminate the loop;
3. execute t he statement;
4. evaluate the update expression;
5. repeat steps 2–4.

Example1
#include<iostream>
using namespace std;
void main()
{
int i=0,j=0;
for(i=5;i>=1;i--)

{
for(j=1;j<=i;j++)
cout<<"\t"<<j;

 cout<<'\n';
}

}
OUTPUT:

Example 2
#include<iostream>
using namespace std;
void main()
{
int i,j,k,l;
for(i=1;i<=9;i++)
{

 {
for(j=1;j<=9-i;j++)

cout<<" ";
for(k=i;k>=i;k--)

cout<<k;
for(l=2;l<=i;l++)

cout<<l;
cout<<endl;

}
}

OUTPUT

22

AUST/EEE

1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

 1
 1 2
 1 2 3
1 2 3 4

5 4 3 2 1
5 4 3 2
5 4 3
5 4
5

Summation:
Example01
Write a program to sum the series
 SUM=X+X2+X3+…..+X
#include<iostream>
using namespace std;
void main()
{int i,n,x,t,sum=0;
cout<<"Enter x value and number of terms in the series";
cin>>x>>n;
t=x;
for(i=1;i<=n;i++)
{

sum+=t;
t*=x;

}
for(i=1;i<n;i++)
cout<<x<<"^"<<i<<"+";
cout<<x<<"^"<<n<<"="<<sum;
}

Example02
Write a program to find the sum of the following series:
13-23+33-43+………..-n3

#include<iostream>
using namespace std;
void main()
{
int i=0,sign=1,sum=0;int n;
cin>>n;
while(i++<n)
{int j=i*i*i;int temp=sign*j;sum+=temp;sign=(-1)*sign;}cout<<"Sumis:"<<sum;
}
Output
3
Sum is 20
Laboratory Problems:

01.Write programs to find the sun of the following series.
 sum=1+22+42+…..+n2

 sum=1-32+52-……+n2

02. Submit all exercise problems.

Do yourself:
1. Write a program to find the following output

23

AUST/EEE

LAB NO: 05
LAB NAME: Function

Objective:
The purpose of this laboratory session is to introduce you to the function (in-built & user
defined).

FUNCTION:

 A C program consists of one or more functions
 All C programs MUST have a main() function
 A function in C performs a particular task e.g. print info on the screen, compute, etc
 Execution of the program begins at the first statement of main () function
 main () function usually invokes (call) other functions to perform its job. Some

functions are defined in the same program, others are provided by libraries e.g.
sin(angle_ param) function is provided by math.h library.

STANDARD C++ LIBRARY FUNCTIONS:

Here is a simple program that uses the predefined square root function:

#include <cmath> // defines the sqrt() function
#include <iostream> // defines the cout object
using namespace std;
int main()
{ // tests the sqrt() function:
for (int x=0; x < 6; x++)
cout << "\t" << x << "\t" << sqrt(x) << endl;
}

A function like sqrt() is executed by using its name as a variable in a statement, like this:
y = sqrt(x);
This is called invoking or calling the function. Thus in the above Example, the code sqrt(x)
calls the sqrt() function. The expression x in the parentheses is called the argument or actual
parameter of the function call, and we say that it is passed by value to the function. So when
x is 3, the value 3 is passed to the sqrt() function by the call sqrt(x).

This process is illustrated by

X=3

Y=1.73205 sqrt()

24

AUST/EEE

USER-DEFINED FUNCTIONS:

More common arrangement is to list only the function’s header above the main program, and
then list the function’s complete definition (head and body) below the main program.
.In this arrangement, the function’s declaration is separated from its definition. A function
declaration is simply the function’s head, followed by a semicolon. A function definition is
the complete function: header and body. A function declaration is also called a function
prototype.
A function declaration is like a variable declaration; its purpose is simply to provide the
compiler with all the information it needs to compile the rest of the file. The compiler does
not need to know how the function works (its body). It only needs to know the function’s
name, the number and types of its parameters, and its return type. This is precisely the
information contained in the function’s head.

Example 01.

#include<iostream.h>
int max(int,int);
// returns larger of the two given integers:
int main()
{ // tests the max() function:
int m,n;
do
{ cin >> m >> n;
cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;
}
while (m != 0);
}
int max(int x,int y)
{ if (x < y) return y;
else return x;
}

Example 02

#include<iostream.h>
long fact(int);
// returns n! = n*(n-1)*(n-2)*...*(2)(1)
int main()
{ // tests the factorial() function:
for (int i=-1; i < 6; i++)
cout << " " << fact(i);
cout << endl;
}
long fact(int n)
{ // returns n! = n*(n-1)*(n-2)*...*(2)(1)
if (n < 0) return 0;
int f = 1;
while (n > 1)
f *= n--;
return f;
}

25

AUST/EEE

Exercise:

1. Write and test the following average() function that returns the average of four numbers:
 float average(float x1,float x2,float x3,float x4)

2. Write and test the following min() function that returns the smallest of four given
integers: int min(int,int,int,int);

void FUNCTIONS :

A function need not return a value. In other programming languages, such a function is called
a procedure or a subroutine. In C++, such a function is identified simply by placing the
keyword void where the function’s return type would be.
A type specifies a set of values. For example, the type short specifies the set of integers
from –32,768 to 32,767. The void type specifies the empty set. Consequently, no variable
can be declared with void type. A void function is simply one that returns no value.

Example 04

#include<iostream.h>
void printDate(int,int,int);
// // prints the given date in literal form;
int main()
{ // tests the printDate() function:
int month,day,year ;
do
{ cin >> month >> day >> year;
printDate(month,day,year);
}
while (month > 0);
}
void printDate(int m,int d, int y)
{ // prints the given date in literal form:
if (m < 1 || m > 12 || d < 1 || d > 31 || y < 0)
{ cerr << "Error: parameter out of range.\n";
return;
}
switch (m)
{ case 1: cout << "January "; break;
case 2: cout << "February "; break;
case 3: cout << "March "; break;
case 4: cout << "April "; break;
case 5: cout << "May "; break;
case 6: cout << "June "; break;
case 7: cout << "July "; break;
case 8: cout << "August "; break;
case 9: cout << "September "; break;
case 10: cout << "October "; break;
case 11: cout << "November "; break;
case 12: cout << "December "; break;
}
cout << d << "," << y << endl;
}

26

AUST/EEE

BOOLEAN FUNCTIONS:

In some situations it is helpful to use a function to evaluate a condition, typically within an if
statement or a while statement. Such functions are called boolean functions after the British
logician George Boole (1815-1864) who developed boolean algebra.

Example 05.

#include <cmath> // defines the sqrt() function
#include <iostream> // defines the cout object
using namespace std;
bool isPrime(int);
// returns true if n is prime,false otherwise;
int main()
{ for (int n=0; n < 80; n++)
if (isPrime(n)) cout << n << " ";
cout << endl;
}
bool isPrime(int n)
{ // returns true if n is prime,false otherwise:
float sqrtn = sqrt(n);
if (n < 2) return false; // 0 and 1 are not primes
if (n < 4) return true; // 2 and 3 are the first primes
if (n%2 == 0) return false; // 2 is the only even prime
for (int d=3; d <= sqrtn; d += 2)
if (n%d == 0) return false; // n has a nontrivial divisor
return true; // n has no nontrivial divisors
}
Output is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79
Press any key to continue...

Example 06

#include<iostream.h>
bool isLeapYear(int);
// returns true iff y is a leap year;
int main()
{ // tests the isLeapYear() function:
int n;
do
{ cin >> n;
if (isLeapYear(n)) cout << n << " is a leap year.\n";
else cout << n << " is not a leap year.\n";
}
while (n > 1);
}
bool isLeapYear(int y)
{ // returns true iff y is a leap year:
return y % 4 == 0 && y % 100 != 0 || y % 400 == 0;
}
Exercise:

3 Write and test the following isSquare() function that determines whether the
given integer is a square number: int isSquare(int n)

 The first ten square numbers are 0, 1, 4, 9, 16, 25, 36, 49, 64, and 81.

27

AUST/EEE

4 Improve the program using compound condition that is more efficient due to short
circuiting.

PASSING BY REFERENCE:

The read-only, pass-by-value method of communication is usually what we usually want for
functions. It makes the functions more self-contained, protecting them against accidental side
effects. However, there are some situations where a function needs to change the value of the
parameter passed to it. That can be done by passing it by reference.
To pass a parameter by reference instead of by value, simply append an ampersand, &, to the
type specifier in the functions parameter list. This makes the local variable a reference to the
argument passed to it. So the argument is read-write instead of read-only. Then any change to
the local variable inside the function will cause the same change to the argument that was
passed to it.

This example shows the difference between passing by value and passing by reference:

Example 06:

#include<iostream.h>
void f(int,int&);
// changes reference argument to 99:
int main()
{ // tests the f() function:
int a = 22,b = 44;
cout << "a = " << a << ", b = " << b << endl;
f(a,b);
cout << "a = " << a << ", b = " << b << endl;
f(2*a-3,b);
cout << "a = " << a << ", b = " << b << endl;
}
void f(int x,int& y)
{ // changes reference argument to 99:
x = 88;
y = 99;
}

The output is:

a = 22, b = 44
a = 22, b = 99
a = 22, b = 99

The call f(a,b) passes a by value to x and it passes b by reference to y. So x is a local variable
that is assigned a’s value of 22, while y is an alias for the variable b whose value is 33. The
function assigns 88 to x, but that has no effect on a. But when it assigns 99 to y, it is really assigning
99 to b, because y is an alias for b. So when the function terminates, a still has its original value 22,
while b has the new value 99. The argument a is read-only, while the argument b is read-write.

OVERLOADING:

C++ allows you to use the same name for different functions. As long as they have different
parameter type lists, the compiler will regard them as different functions. To be distinguished,

28

AUST/EEE

the parameter lists must either contain a different number of parameters, or there must be at
least
one position in their parameter lists where the types are different.

Example 08:

#include<iostream.h>
int max(int,int);
int max(int,int,int) ;
int main()
{ cout << max(99,77) << " " << max(55,66,33);
}
int max(int x,int y)
{ // returns the maximum of the two given integers:
return (x > y ? x : y);
}
int max(int x,int y, int z)
{ // returns the maximum of the three given integers:
int m = (x > y ? x : y); // m = max(x,y)
return (z > m ? z : m);
}

Using the return Statement to Terminate a Program:

Example 09:

int main()
{ // prints the quotient of two input integers:
int n,d;
cout << "Enter two integers: ";
cin >> n >> d;
if (d == 0) return 0;
cout << n << "/" << d << " = " << n/d << endl;
}

Using the exit() Function to Terminate a Program:

Example 10:

#include <cstdlib> // defines the exit() function
#include <iostream> // defines the cin and cout objects
using namespace std;
double reciprocal(double x);
int main()
{ double x;
cin >> x;
cout << reciprocal(x);
}
double reciprocal(double x)
{ // returns the reciprocal of x:
if (x == 0) exit(1); // terminate the program
return 1.0/x;
}

29

AUST/EEE

done using Horner’s Algorithm, grouping the calculations as a0 + (a1 + (a2 + a3x)x)x for
greater efficiency:

Example 11.

#include<iostream.h>
double p(double, double, double=0,double=0, double=0);
int main()
{ // tests the p() function:
double x = 2.0003;
cout << "p(x,7) = " << p(x,7) << endl;
cout << "p(x,7,6) = " << p(x,7,6) << endl;
cout << "p(x,7,6,5) = " << p(x,7,6,5) << endl;
cout << "p(x,7,6,5,4) = " << p(x,7,6,5,4) << endl;
}
double p(double x,double a0,double a1,double a2,double a3)
{ // returns a0 + a1*x + a2*x^2 + a3*x^3:
return a0 + (a1 + (a2 + a3*x)*x)*x;
}

Exercise:

1. Write and test the following computeSphere() function that returns the volume v and the
 surface area s of a sphere with given radius r:
 void computeSphere(float& v,float& s,float r).

2. Write and test a function that uses the greatest common divisor function

3. Write a program to find a root (for polynomial of a given maximum degree 4, i.e. a
function of the form c4 x4 + c3 x3 + c2 x2 + c1 x + c0 for arbitrary values of the
coefficients c4, c3, c2, c1, and c0.

 The formula for evaluating the polynomial at a given value of x is
 val = (((c4 * x + c3)*x + c2)*x + c1)*x + c0

 The program is to prompt for and read the values of the coefficients.

4. Write and test the following power() function that returns x raised to the power n,
where n can be any integer:

 double power(double x,int p);
 Use the algorithm that would compute x20 by multiplying 1 by x 20 times.

5. Write a program to find the following series:

n!

nx
...

3!

3x

2!

2x

1!

x
1xe 2n!

x
...

6!

x

4!

x

2!

x
xsum

n642

DEFAULT ARGUMENTS :

This function evaluates the third degree polynomial a0+a1x+a2x
2+a3x

3. The actual evaluation
is

30

AUST/EEE

LAB NO: 06

Arrays:

An array allows you to store and work with multiple values of the same data type. An array is a
sequence of objects all of which have the same type. The objects are called the
elements of the array and are numbered consecutively 0, 1, 2, 3, These numbers are called

index values or subscripts of the array. The term “subscript” is used because as a mathematical

sequence, an array would be written with subscripts: a0, a1, a2, …. The subscripts locate the

element’s position within the array, thereby giving direct access into the array.

If the name of the array is a, then a[0] is the name of the element that is in position

0, a[1] is the name of the element that is in position 1, etc. In general, the ith a[0] 11.11

element is in position i–1.
a[1] 33.33

So if the array has n elements, their names are a [0], a[1], a[2], …, a[n-1].

We usually visualize an array as a series of adjacent storage compartments
a[2] 55.55

that are numbered by their index values. For example, the diagram here shows

an array named a with 5 elements: a[0] contains 11.11, a[1] contains 33.33, a[3] 77.77
a[2] contains 55.55, a[3] contains 77.77, and a[4] contains 99.99. The

diagram actually represents a region of the computer’s memory because an

a[4] 99.99
array is always stored this way with its elements in a contiguous sequence.
The method of numbering the ith element with index i–1 is called zero-based

indexing. It guarantees that the index of each array element is equal to the number of “steps”

from the initial element a[0] to that element. For example, element a[3] is 3 steps from element
a[0].

Virtually all useful programs use arrays. If several objects of the same type are to be used in
the same way, it is usually simpler to encapsulate them into an array.

INITIALIZING AN ARRAY:

In C++, an array can be initialized with an optional initializer list, like this:
float a[] = {22.2,44. 4,66.6 };

The values in the list are assigned to the elements of the array in the order that

they are listed. The size of the array is set to be equal to the number of values in

the initializer list. So this single line of code declares a to be an array of 3 floats
and then initializes those for elements with the four values given in the list.

a[0] 55.5

a[1] 66.6

a[2] 77.7

a[3] 0.0

a[4] 0.0

LAB NAME : Array

31

AUST/EEE

Example 01:

#include<iostream.h>

int main()
{ float a[] = { 22.2,44.4, 66.6 };

int size = sizeof(a)/sizeof(float);

for (int i=0; i<size; i++)
cout << "\ta[" << i << "] = " << a[i] << endl;
}

The output is :

a[0] = 22.2

a[1] = 44.4

a[2] = 66.6

PASSING AN ARRAY TO A FUNCTION:

Example 02:

// Passing an Array to a Function that Returns its

Sum// #include<iostream.h>
int sum(int[],int);

int main()
{ int a[] = { 11,33, 55,77 }; int

size = sizeof(a)/sizeof(int);
cout << "sum(a,size) = " << sum(a,size) << endl;
}
int sum(int a[],int

n) { int sum=0;
for (int i=0; i<n;

i++) sum += a[i];
return sum;
}

Example 03 :

// that inputs are stored in reverse
#include<iostream.h>

int main()
{ const int SIZE=5;

double a[SIZE];
cout << "Enter " << SIZE << "

numbers:\n"; for (int i=SIZE-1; i>=0; i--)
{ cout << "\ta[" << i << "]:

"; cin >> a[i];
}
cout << "In reverse order,they

are:\n"; for (int i=0; i<SIZE; i++)
cout << "\ta[" << i << "] = " << a[i] << endl;

This program uses a read() function to input values into the array a interactively. Then it uses a

print() function to print the array:

32

AUST/EEE

Example 04:

#include<iostream.h>

void read(int[],int&);

void print(int[],int);

int main()

{ const int MAXSIZE=100;

int a[MAXSIZE]={0},size;

read(a,size);

cout << "The array has " << size << " elements:

"; print(a,size);

}

void read(int a[],in t& n)

{ cout << "Enter integers. Terminate with

0:\n"; n = 0;

do

{ cout << "a[" << n << "]: ";

cin >> a[n];

} while (a[n++] != 0 && n <

MAXSIZE); --n; // don't count the 0

}

void print(int a[],i nt

n) { for (int i=0; i<n;

i++) cout << a[i] << " ";

}

Exercise:

1. Write a program that will calculate the average of the data that has been given by

the user. Use array to do this.

2.

Write and test the following function that returns the minimum value among the first
n elements:

float min(float a[], int n)

MULTIDIMENSIONAL ARRAYS:

The arrays we have used previously have all been one-dimensional. This means that they are

linear; i.e., sequential. But the element type of an array can be almost any type, including an

array type. An array of arrays is called a multidimensional array. A one-dimensional array of

one-dimensional arrays is called a two-dimensional array; a one-dimensional array of two-

dimensional arrays is called a three-dimensional array; etc. The simplest way to declare a

multidimensional array is like this: double a [32][10][4];

This is a three-dimensional array with dimensions 32, 10, and 4. The statement

a [25][8][3] = 99.99 would assign the value 99.99 to the element identified by the multi-
index (25,8,3).

33

AUST/EEE

Example 05 :
#include<iostream.h>
//This program shows how a two-dimensional array can be processed//
void read(int a[][5]);
void print(cont int

a[][5]); int main()
{ int a[3][5];

read(a);

print(a);
}
void read(int a[][5])
{ cout << "Enter 15 integers,5 per

row:\n”; for (int i=0; i<3; i++)
{ cout << "Row " << i << ": ";
for (int j=0; j<5;

j++) cin >> a[i][j];
}
}
void print(const int a[][5])
{ for (int i=0; i<3;

i++) { for (int j=0;

j<5; j++) cout << " " <<

a[i][j]; cout << endl;
}
}
The output is :

Enter 15 integers,5 per

row: Row 0: 44 77 33 11 44
Row 1: 60 50 30 90 70
Row 2: 85 25 45 45 55
44 77 33 11 44
60 50 30 90 70
85 25 45 45 55

Example 06:

#include<iostream.h>
int numZeros(int a[][4][3],int n1,int n2,int

n3); int main()
{ int a[2][4][3] = { { {5, 0, 2}, {0, 0, 9}, {4, 1, 0}, {7, 7, 7}

}, { {3,0,0}, {8,5,0}, {0,0,0}, {2,0,9} }
};
cout << "This array has " << numZeros(a,2,4,3) << " zeros:\n";
}
int numZeros(int a[][4][3],int n1,int n2,int

n3) { int count = 0;
for (int i = 0; i < n1; i++)

for (int j = 0; j < n2; j++)

for (int k = 0; k < n3; k++)

if (a[i][j][k] == 0)

++count; return count;
}
Notice how the array is initialized: it is a 2-element array of 4-element arrays of 3 elements each. That

makes a total of 24 elements. It could have been initialized like this:

34

AUST/EEE

int
a[2][4][3]={5,0,2,0,0,9,4,1,0,7,7,7,3,0,0,8,5,0,0,0,0,2,0,9};
or like this:
int a[2][4][3]={{5,0,2,0,0,9,4,1,0,7,7,7},{3,0,0,8,5,0,0,0,0,2,0,9}};
But these are more difficult to read and understand than the three-dimensional initializer list.
Also notice the three nested for loops. In general, processing a d-dimensional array is done
with d for loops, one for each dimension.

Exercise:

3.

Write a program that will multiply two matrixes of any columns and row if
it passes the test for the conditions of matrix multiplication.

4.

Write and test the following function:

double stdev(double x[],int n);

The function returns the standard deviation of a data set of n numbers x0,…,

xn–1

defined by the formula

2

n

1

x i x

i

0

sum

n

1

where xi is the mean of the data. This formula says: square each deviation

(x[i] - mean) sum those squares; divide that square root by n-1;

take

the square root of that sum.

35

AUST/EEE

LAB NO: 07

LAB NAME: Pointer

POINTER:

A pointer is an object that contains a memory address. Very often this address is the
location of another object, such as a variable. For example, if x contains the address

of y, then x is said to “point to” y. Pointer variables must be declared as such. The

general form of a pointer variable declaration is
Type* pointername;

Here, pointer variables have the derived type “pointer to T”,where T is the type of the

object to which the pointer points. The derived type is denoted by T*. pointername is

the name of the pointer variable. For example, to declare ip to be a pointer to an int,

use this declaration:
int* ip;

Since the derived type of ip is int, it can be used to point to int values. Here, a

float pointer is declared:
float* fp;

In this case, the derived type of fp is float, which means that it can be used to point to a float

value.

Example 01:

#include <iostream>

using namespace std;

int main()

{

int total;

int* ptr;

total = 3200; // assign 3,200 to total

ptr = &total; // get address of total

cout<<”ptr=”<<ptr<<endl;

cout <<”&ptr=”<<&ptr<<endl;

return 0;

}

Reference operator (&):

The address that locates a variable within memory is what we call a reference to

that variable. This reference to a variable can be obtained by preceding the

identifier of a variable with an ampersand sign (&), known as reference operator,

and which can be literally translated as "address of". For example:

ted = &andy;

This would assign to ted the address of variable andy, since when preceding the
name of the variable andy with the reference operator (&) we are no longer talking
about the content of the variable itself, but about its reference (i.e., its address in

memory).

36

AUST/EEE

Consider the following code fragment:

andy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution of this, are shown in the
following diagram:

Dereference operator (*):

We have just seen that a variable which stores a reference to another variable is called

a pointer. Pointers are said to "point to" the variable whose reference they store.

Notice the difference between the reference and dereference operators:

1. & is the reference operator and can be read as "address of"

2. * is the dereference operator and can be read as "value pointed by"
Thus, they have complementary (or opposite) meanings. A variable referenced
with & can be dereferenced with *

Example 02:

// my first pointer

#include<iostream>

using namespace std;

int main ()

{

int firstvalue;

cin>>firstvalue;

int* mypointer;

mypointer = &firstvalue;

cout << "firstvalue is " << firstvalue <<endl;

cout << " mypointer " << mypointer <<endl;

cout << " *mypointer" << *mypointer <<endl;

return 0;

}

37

AUST/EEE

Example 03:

// more pointers

#include <iostream>

using namespace std;

int main ()

{

int firstvalue = 5, secondvalue = 15;

int* p1, int* p2;

p1 = &firstvalue; // p1 = address of firstvalue

p2 = &secondvalue; // p2 = address of secondvalue

*p1 = 10; // value pointed by p1 = 10

*p2 = *p1; // value pointed by p2 = value pointed by p1

p1 = p2; // p1 = p2 (value of pointer is copied)

*p1 = 20; // value pointed by p1 = 20

cout << "firstvalue is " << firstvalue << endl;

cout << "secondvalue is " << secondvalue << endl;

return 0;

}

Pointers and arrays:

The concept of array is very much bound to the one of pointer. In fact, the identifier of
an array is equivalent to the address of its first element, as a pointer is equivalent to the
address of the first

element that it points to, so in fact they are the same concept. For example, supposing

these two declarations

Example 04:

// more pointers

#include <iostream>

using namespace std;

int main ()

{

int numbers[5];

int* p;

p = numbers; *p = 10;

p++; *p = 20;

p=&numbers[2];*p=30;

p=numbers+3;*p=40;

p=numbers;*(p+4)=50;

for (int n=0; n<5; n++)

cout << numbers[n] << ", ";

return 0;

}

Pointer arithmetic’s:

To conduct arithmetical operations on pointers is a little different than to conduct them

on regular integer data types. To begin with, only addition and subtraction operations

are allowed to be conducted with them, the others make no sense in the world of

pointers. But both addition and subtraction have a different behavior with pointers

according to the size of the data type to which they point.

When we saw the different fundamental data types, we saw that some occupy more or

38

AUST/EEE

less space than others in the memory. For example, let's assume that in a given

compiler for a specific machine, char takes 1 byte, short takes 2 bytes and long takes 4.

Suppose that we define three pointers in this compiler:

Char* mychar;

Short* myshort;

and that we know that they point to memory locations 1000, 2000 and 3000 respectively.So
if
we write:

mychar++;
myshort++;
mylong++;

mychar, as you may expect, would contain the value 1001. But not so obviously,

myshort would contain the value 2002, and mylong would contain 3004, even though

they have each been increased only once. The reason is that when adding one to a

pointer we are making it to point to the following element of the same type with

which it has been defined, and therefore the size in bytes of the type pointed is added

to the pointer

Pointers to functions:

C++ allows operations with pointers to functions. The typical use of this is for passing
a function as an argument to another function, since these cannot be passed

dereferenced. In order to declare a pointer to a function we have to declare it like the

prototype of the function except that the name of the function is enclosed between

parentheses () and an asterisk (*) is inserted before

the name:

39

AUST/EEE

Example 05:

// pointer to functions

#include <iostream>

using namespace std;

int addition (int a, int b)

{return (a+b); }

int subtraction (int a, int b)

{return (a-b); }

int operation (int x, int y, int (*functocall)(int,int))

{ int g;

g = (*functocall)(x,y);

return (g);

}

int main()

{ int m,n;

int (*minus)(int,int) = subtraction;

m = operation (7, 5, addition);

n = operation (20, m, minus);

cout <<n;

return 0; }

In the example, minus is apointer to a function that has two parameters of

type int. It is immediately assigned to point to the function subtraction, all in

a single line:

int (* minus)(int,int) = subtraction;

Exercise:

1.Write a programto demonstrate a pointer to a function is declared to perform simple

arithmetic operations such as addition, subtraction, multiplication and division of two

numbers.

40

AUST/EEE

LAB NO: 08

LAB NAME: strings

Cstrings:

A Cstring is a sequence of contiguous characters in memory terminated by NUL character

„\0‟.C-strings are accessed by variables of type char* (pointer to char). For an example, if s

has type char*,then

cout<<s<<endl;

will print the characters stored in the memory beginning at the address s and ending with the

first occurrence of NUL charater.

In C++, a C-string is an array of characters with the following important features:

i) An extra component is appended to the end of the array, and its value is set to the

NUL character „\0‟. This means the total number to characters is the array is

always one more than the string length.

ii) The C-string may be initialized with a string literal like this:

char s[]=” Abcd”

Note that this string has 5 elements : „A‟ , ‟ b‟ , ‟ c‟ , ‟ d‟ and „\0‟ .

iii) The entire C-string may be output as a single object, like this:

cout<<s;

The system will copy characters from s to cout until the NUL character „\0‟ is

encountered.

iv) The entire C-string may be input as a single object, like this:

cin>>s;

The system will copy characters from cin into s until a white space character is

encountered. The user must ensure that s is defined to be a character string long

enough to hold the input.

v) The C header file <cstring> provides a wealth of special functions such as

strlen(), strcpy(), strncpy(), strcat(), strcmp(), strncmp() etc. for manipulating

C-strings.

Example 01:

#include<iostream>

#include<cstring>

using namespace std;

void main()

{char a[]= “ABCdef ” ;

cout<<a<<endl;

cin>>a;

cout<<<a<endl;

char b[50];

cin.getline(b,50);

cout<<b<<endl;

}

41

AUST/EEE

Example 02:

The strlen() function returns the number of characters in the string that precede

the first occurrence of the NUL character „\0‟.

#include<iostream>

#include<cstring>

using namespace std;

Example 03:

If s1 and s2 are two strings then the function strcpy(s1,s2) copies s2 into s1.

#include<iostream>

#include<cstring>

using namespace std;

 cout<< “ s1=” << s1<<endl;

 }

42

AUST/EEE

Example 04:

If s1 and s2 are two strings then the function strcat(s1,s2) appends s2 onto the end

of s1.

#include<iostream>

#include<cstring>

using namespace std;

cout<< “ s1=” << s1<<endl;

}

Example 05:

If s1 and s2 are two strings then the call strncpy(s1,s2,n) replaces the first n

characters of s1 by the first n characters of s2 leaving the rest of s1 unchanged.

#include<iostream>

#include<cstring>

using namespace std;

43

AUST/EEE

 cout<< “ s1=” << s1<<endl;

}

Example 06:

// this function copies s2 into s1 without using predefined function strcpy().

#include<iostream>

#include<cstring>

using namespace std;

char* stringcopy(char* s1, char* s2)

{char* p=s1;

 for(; *s2; p++, s2++)

*p=*s2;

*p= „\0‟ ;

 return s1 ;

}

void main()

{char a1[]= “ ABCDEFX ” ;

char a2[]= “ XYZ ” ;

stringcopy(a1,a2);

cout<<a1<<endl;

}

44

AUST/EEE

Example 07:

// To capitalize the given string.

void main()

{char s[]= “ Today is Monday.” ;

for(int i=0; s[i]!= „\0‟; i++)

 if(s[i]>= „a‟ && s[i]<= „z‟)

s[i]=s[i]-(„a‟-„A‟);

cout<< “s=”<<s<<endl;

}

Example 08:

#include<iostream>

#include<string>

using namespace std;

int main()

{string str1= “Hello” ;

 string str2= “ World” ;

string str3; int len;

//copies str1 into str3.

str3=str1;

cout<< “str3=”<<str3<<endl;

//concatenates str1 and str2.

str3=str1+str2;

cout<< “str3=”<<str3<<endl;

//total length of str3 after concatenation.

len=str3.size();

cout<< “str3.len=”<<len<<endl;

return 0;}

Exercise:

1. Write a program that counts the VOWELS of a string.

2. Write a program that reads one line of text and then prints it with all its blanks

removed.

3. Write a program that reads one line of text and then prints the line in reverse

order.

For an example:

Input: Today is Monday.

Output: .yadnoM si yadoT

4. Catenate two strings without using strcat().

5. Catenate two strings such that the function appends the first n characters of 2
nd

string to s1 string without using strncat().

45

AUST/EEE

LAB NO : 09

LAB NAME: Classes

Introduction:

Class Declaration:

46

AUST/EEE

Example: 01

//Implementing the Ratio class.

#include<iostream.h>

47

AUST/EEE

Example : 02

//A self contained implementation of the Ratio class.

Example: 03

48

AUST/EEE
Exercise:

1.

Using Class show Fibonacci numbers in the output.

49

