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On The Diophantine Equation 3x + 31y = z2

Md. Shameem Reza*

Abstract:  In this paper the Diophantine equation 3x + 31y = z2 has been solved. It is found that the 
equation has exactly one non-negative integer solution for x, y and z and the solution is (1,0,2).

1.  Introduction
Acu (2007) solved the Diophantine equation 2x + 5y = z2 and he got exactly two solutions for 
non-negative integers (x,y,z) which are (3,0,3), (2,1,3).

Rabago (2013) solved two Diophantine equations 3x + 19y = z2 and 3x + 91y = z2 and found that 
the equations have exactly two solutions for non-negative integers (x,y,z) which are {(1,0,2), 
(4,1,10)} and {(1,0,2), (2,1,10)} respectively.

The Diophantine equations 5x + 31y = z2, 7x + 29y = z2, 13x + 23y  =  z2 have  been solved by 
Rabago (2013). The author found that each equations have only one non-negative integer 
solution (1,1,6). 

Shivangi and Madan (2017) solved the exponential Diophantine equation 3x + 13y = z2 and 
found that the equation has exactly four non-negative integer solutions (1,0,2), (1,1,4), (3,2,14) 
and (5,1,16) in the form of (x,y,z).

Sroysang (2012, 2013) solved the Diophantine equations 3x + 5y = z2 and 3x + 17y = z2. The author 
found that each equations have only one non-negative integer solution (1,0,2).

So far the Diophantine equation 3x + 31y = z2 has not been solved yet. Thus the equation has 
been solved in this paper.

2. Preliminaries
Proposition 2.1. (a,b,x,y) = (3,2,2,3) is a unique solution  for the Diophantine equation  ax - by  = 
1 where a, b, x and y are integers such that min {a,b,x,y} > 1 (Catalan’s conjecture) (Chotchaisthit 
(2004)).

Lemma 2.2. The Diophantine equation 3x + 1 = z2 has a unique solution (x,z) = (1,2) where x 
and z are non-negative integers (Sroysang (2012).

Proof: Let x and z be non-negative integers in the equation 3x + 1 = z2. 
If z = 0, then 3x + 1 = 0 or, 3x = - 1 which is impossible. 
If x = 0, then z2 = 2 is not possible. Then x ≥ 1. 
Thus, z2 = 3x + 1 ≥ 31 + 1 = 4.  Then z ≥ 2. 
Now, we consider the equation in the form z2 - 3x = 1 which is similar to the proposition 2.1. 
By proposition 2.1, we have x = 1 then z = 2. 

Hence (1,2) is a unique solution for the equation 3x + 1 = z2  where (x,z) are non-negative 
integers.
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Lemma 2.3. The Diophantine equation 1 + 31y = z2 has no non-negative integer solution (y,z). 

Proof. Let y and z be non-negative integers in the equation1 + 31y = z2. 
If y = 0, then z2 = 2 which is impossible. It follows that y ≥ 1. 
Thus, z2 = 1 + 31y ≥ 1 + 311= 32.  We obtain that z ≥ 6. 
Now, we consider this equation in the form z2 - 31y = 1. 
By Proposition 2.1, we obtain that y = 1.  Thus is a contradiction with the proposition 2.1. 
Hence the equation 1 + 31y = z2 has no non-negative integer solution.

3. New Results
Theorem 3.1. (1,0,2) is a unique non-negative integer solution (x,y,z) for the Diophantine 
equation 3x + 31y = z2 where x, y and z are non-negative integer.

Proof: Let x,y and z be non-negative integer in 3x + 31y = z2. 
If x = 0, then 1 +31y = z2 has no non-negative integer solution (by Lemma 2.3). 
Thus, we have x ≥1. Now we divide the number y into three cases as follows:

Case 1. If y = 0. Lemma 2.2 follows that x = 1 and z = 2. 

Case 2. If y is even, say y = 2n where n is a positive integer then
 3x + 312n = z2

or,  3x = (z -31n ) (z + 31n )
or, 3 (x - u) 3u = (z -31n ) (z + 31n ) where u is a non-negative integer and  x >2u. 
Thus, (z -31n ) = 3u then (z + 31n) = 3 (x - u)

Now, (z + 31n ) - (z -31n ) = 3(x - u) -3u

or, 31n . 2 = 3u (3 (x -2u) - 1).
Thus, u = 0 and 3x -1 = 31n . 2 
Adding both side by -2, we obtain 2(31n -1) = 3(3 (x-1) -1).
That is x = 2 and 31n -1 = 3 or, 31n = 4, which is a contradiction. 
Thus, 3x + 31y = z2 is not possible for even positive integer.

Case 3. When y is odd, say y = 2k + 1 where k is a non-negative integer.  Then we can write  
 3x + 31y = z2 as 3x + 312k . 31 = z2

or, 3x + 312k . 6 = z2 -312k . 25
or, 3x + 312k .6= (z + 31k . 5) (z - 31k . 5). 
Note that 3x + 31y = z2 has a solution in positive integer then z is even say z = 2p for some 
natural number p. Then we have,
 3x + 312k . 6 = (2p + 31k . 5) (2p - 31k . 5). 
This equation has two possibilities.

{ (2p -31k . 5 = 1

2p + 31k . 5 = 3x + 312k . 6)
or,

{ (2p + 31k . 5 = 1

2p -31k . 5 = 3x + 312k . 6)
Solving the first set of equalities we have, 

 31k (10 - 31k . 6) = 1(3x -1) which implies that 
 31k = 310 and 3x  -1 = 10- 31k . 6
This gives that k = 0 and 3x = 5. But it is not possible.
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Again solving the second set of equalities we get,
 31k (31k . 6 + 10) = 1(1 - 3x ) which implies that 
 31k = 1 or, k = 0
and  6.1 + 10 = 1-3x or, 3x = -15 which is impossible.
Therefore, by case 1, case 2 and case 3, (1,0,2) is only non-negative integer solution of the 
Diophantine equation 3x + 31y =z2.

Corollary 3.2 The Diophantine equation 9x + 31y = z2 has no non-negative integer solution 
where x, y and z are non-negative integer.

Proof: Suppose that there are non-negative integers x, y and z such that 
 9x + 31y = z2

or, 32x + 31y = z2.
Let u = 2x then 3u + 31y = z2.
By theorem 3.1 it follows that (u,y,z) = (1,0,2). 
Thus, u = 1 then x =1⁄2 it is a contradiction. 
Hence 9x + 31y = z2 has no non-negative integer solution.

Corollary 3.3 The Diophantine equation 3x + 31y = z4 has no non-negative integer solution 
where x, y and z are non-negative integer.

Proof: Suppose that there are non-negative integers x, y and z such that 3x + 31y = z4. 
Let u = z2 then 3x + 31y = u2.
By theorem 3.1 it follows that (x,y,u) = (1,0,2). 
Thus, u = 2 then z2 = 2 it is a contradiction. 
Hence 3x + 31y = z4 has no non-negative integer solution.

Corollary 3.4 (1,0,2) is a unique non-negative integer solution (x,y,z) for the Diophantine 
equation 3x + 961y = z2 where x, y and z are non-negative integer.

Proof:  Suppose that there are non-negative integers x, y and z such that,
 3x + 961y = z2

or, 3x + 312y = z2. 
Let u = 2y then 3x + 31u = z2.
By theorem 3.1 it follows that (x,u,z) =  (1,0,2). 
Thus, u = 0 then y = 0. 
Hence (1,0,2) is only non-negative integer solution of the Diophantine equation  3x + 961y = z2.

4. Conclusion
In this paper the Diophantine equation 3x + 31y = z2 and 3x + 961y = z2 have been solved. It is 
found that each equations have exactly one non-negative integer solution for x, y and z and 
the solution is (1,0,2). The Diophantine equation 9x + 31y = z2 and 3x + 31y = z4 also have been 
solved and found that no non-negative integer solution where x, y and z are non-negative 
integer.
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