The AUST
 JOURNALOFSCEECEEANDTECHNOLOGY
 Volume-7 Issue:1\&2
 January 2015 \& July 2015
 (Published in July 2018)

Ahsanullah University of Science and Technology

EDITORIAL BOARD

Prof. Dr. Kazi Shariful Alam
Treasurer, AUST

Prof. Dr. Jasmin Ara Begum
Head, Department of Architecture, AUST

Prof. Dr. Md. Amanullah

Head, School of Business, AUST
Prof. Dr. Sharmin Reza Chowdhury
Head, Department of Civil Engineering, AUST
Prof. Dr. Kazi A. Kalpoma
Head, Department of Computer Science \& Engineering, AUST
Prof. Dr. Satyendra Nath Biswas
Head, Department of Electrical \& Electric Engineering, AUST.
Prof. Dr. Lal Mohan Baral
Head, Department of Textile Engineering, AUST.
Prof. Dr. A. K. M. Nurul Amin
Head, Department of Mechanical and Production Engineering, AUST.

Prof. Dr. Tamanna Afroze

Head, Department of Arts \& Sciences, AUST

EDITOR

Prof. Dr. Kazi Shariful Alam

Treasurer
Ahsanullah University of Science and Technology

On The Diophantine Equation $3^{x}+31^{y}=z^{2}$

Md. Shameem Reza*

Abstract: In this paper the Diophantine equation $3^{x}+37^{y}=z^{2}$ has been solved. It is found that the equation has exactly one non-negative integer solution for x, y and z and the solution is $(1,0,2)$.

1. Introduction

Acu (2007) solved the Diophantine equation $2^{x}+5^{y}=z^{2}$ and he got exactly two solutions for non-negative integers (x, y, z) which are $(3,0,3),(2,1,3)$.

Rabago (2013) solved two Diophantine equations $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$ and found that the equations have exactly two solutions for non-negative integers (x, y, z) which are $\{(1,0,2)$, $(4,1,10)\}$ and $\{(1,0,2),(2,1,10)\}$ respectively.

The Diophantine equations $5^{x}+31^{y}=z^{2}, 7^{x}+29^{y}=z^{2}, 13^{x}+23^{y}=z^{2}$ have been solved by Rabago (2013). The author found that each equations have only one non-negative integer solution $(1,1,6)$.

Shivangi and Madan (2017) solved the exponential Diophantine equation $3^{x}+13^{y}=z^{2}$ and found that the equation has exactly four non-negative integer solutions $(1,0,2),(1,1,4),(3,2,14)$ and $(5,1,16)$ in the form of (x, y, z).

Sroysang $(2012,2013)$ solved the Diophantine equations $3^{x}+5^{y}=z^{2}$ and $3^{x}+17^{y}=z^{2}$. The author found that each equations have only one non-negative integer solution ($1,0,2$).

So far the Diophantine equation $3^{x}+31^{y}=z^{2}$ has not been solved yet. Thus the equation has been solved in this paper.

2. Preliminaries

Proposition 2.1. $(a, b, x, y)=(3,2,2,3)$ is a unique solution for the Diophantine equation $a^{x}-b^{y}=$ 1 where a, b, x and y are integers such that $\min \{a, b, x, y\}>1$ (Catalan's conjecture) (Chotchaisthit (2004)).

Lemma 2.2. The Diophantine equation $3^{x}+1=z^{2}$ has a unique solution $(x, z)=(1,2)$ where x and z are non-negative integers (Sroysang (2012).

Proof: Let x and z be non-negative integers in the equation $3^{x}+1=z^{2}$.
If $z=0$, then $3^{x}+1=0$ or, $3^{x}=-1$ which is impossible.
If $x=0$, then $z^{2}=2$ is not possible. Then $x \geq 1$.
Thus, $z^{2}=3^{x}+1 \geq 3^{1}+1=4$. Then $z \geq 2$.
Now, we consider the equation in the form $\mathrm{z}^{2}-3^{\mathrm{x}}=1$ which is similar to the proposition 2.1.
By proposition 2.1, we have $x=1$ then $z=2$.
Hence $(1,2)$ is a unique solution for the equation $3^{x}+1=z^{2}$ where (x, z) are non-negative integers.

[^0]Lemma 2.3. The Diophantine equation $1+31^{y}=z^{2}$ has no non-negative integer solution (y, z).
Proof. Let y and z be non-negative integers in the equation $1+31^{y}=z^{2}$.
If $y=0$, then $z^{2}=2$ which is impossible. It follows that $y \geq 1$.
Thus, $z^{2}=1+31^{y} \geq 1+31^{1}=32$. We obtain that $z \geq 6$.
Now, we consider this equation in the form $z^{2}-31^{y}=1$.
By Proposition 2.1, we obtain that $y=1$. Thus is a contradiction with the proposition 2.1.
Hence the equation $1+31^{y}=z^{2}$ has no non-negative integer solution.

3. New Results

Theorem 3.1. $(1,0,2)$ is a unique non-negative integer solution (x, y, z) for the Diophantine equation $3^{x}+31^{y}=z^{2}$ where x, y and z are non-negative integer.

Proof: Let x, y and z be non-negative integer in $3^{x}+31^{y}=z^{2}$.
If $x=0$, then $1+31^{y}=z^{2}$ has no non-negative integer solution (by Lemma 2.3).
Thus, we have $x \geq 1$. Now we divide the number y into three cases as follows:
Case 1. If $\mathrm{y}=0$. Lemma 2.2 follows that $\mathrm{x}=1$ and $\mathrm{z}=2$.
Case 2. If y is even, say $y=2 n$ where n is a positive integer then

$$
3^{x}+31^{2 n}=z^{2}
$$

or, $\quad 3^{x}=\left(z-31^{n}\right)\left(z+31^{n}\right)$
or, $\quad 3^{(x-u)} 3^{u}=\left(z-31^{n}\right)\left(z+31^{n}\right)$ where u is a non-negative integer and $x>2 u$.
Thus, $\quad\left(z-31^{n}\right)=3^{u}$ then $\left(z+31^{n}\right)=3^{(x-u)}$
Now, $\quad\left(z+31^{n}\right)-\left(z-31^{n}\right)=3^{(x-u)}-3^{u}$
or, $\quad 31^{n} .2=3^{u}\left(3^{(x-2 u)}-1\right)$.
Thus, $\quad u=0$ and $3^{x}-1=31^{n} .2$
Adding both side by -2 , we obtain $2\left(31^{n}-1\right)=3\left(3^{(x-1)}-1\right)$.
That is $x=2$ and $31^{n}-1=3$ or, $31^{n}=4$, which is a contradiction.
Thus, $3^{x}+31^{y}=z^{2}$ is not possible for even positive integer.
Case 3. When y is odd, say $y=2 k+1$ where k is a non-negative integer. Then we can write

$$
3^{x}+31^{y}=z^{2} \text { as } 3^{x}+31^{2 k} \cdot 31=z^{2}
$$

or, $\quad 3^{x}+31^{2 k} \cdot 6=z^{2}-31^{2 k} .25$
or, $\quad 3^{x}+31^{2 k} \cdot 6=\left(z+31^{k} .5\right)\left(z-31^{k} .5\right)$.
Note that $3^{x}+31^{y}=z^{2}$ has a solution in positive integer then z is even say $z=2 p$ for some natural number p. Then we have,

$$
3^{x}+31^{2 k} \cdot 6=\left(2 p+31^{k} \cdot 5\right)\left(2 p-31^{k} \cdot 5\right)
$$

This equation has two possibilities.

$$
\left\{\begin{array}{l}
\left(2 p-31^{k} \cdot 5=1\right. \\
\left.2 p+31^{k} \cdot 5=3^{x}+31^{2 k} \cdot 6\right)
\end{array}\right.
$$

or,

$$
\left\{\begin{array}{l}
\left(2 p+31^{k} \cdot 5=1\right. \\
\left.2 p-31^{k} \cdot 5=3^{x}+31^{2 k} \cdot 6\right)
\end{array}\right.
$$

Solving the first set of equalities we have,

$$
\begin{aligned}
& 31^{\mathrm{k}}\left(10-31^{\mathrm{k}} \cdot 6\right)=1\left(3^{\mathrm{x}}-1\right) \text { which implies that } \\
& 31^{\mathrm{k}}=31^{0} \text { and } 3^{\mathrm{x}}-1=10-31^{\mathrm{k}} .6
\end{aligned}
$$

This gives that $\mathrm{k}=0$ and $3^{\mathrm{x}}=5$. But it is not possible.

Again solving the second set of equalities we get, $31^{\mathrm{k}}\left(31^{\mathrm{k}} .6+10\right)=1\left(1-3^{\mathrm{x}}\right)$ which implies that $31^{\mathrm{k}}=1$ or, $\mathrm{k}=0$
and $\quad 6.1+10=1-3^{x}$ or, $3^{x}=-15$ which is impossible.
Therefore, by case 1 , case 2 and case $3,(1,0,2)$ is only non-negative integer solution of the Diophantine equation $3^{x}+31^{y}=z^{2}$.

Corollary 3.2 The Diophantine equation $9^{x}+31^{y}=z^{2}$ has no non-negative integer solution where x, y and z are non-negative integer.

Proof: Suppose that there are non-negative integers x, y and z such that

$$
9^{x}+31^{y}=z^{2}
$$

or, $\quad 3^{2 x}+31^{y}=z^{2}$.
Let $u=2 x$ then $3^{u}+31^{y}=z^{2}$.
By theorem 3.1 it follows that $(u, y, z)=(1,0,2)$.
Thus, $u=1$ then $x=1 / 2$ it is a contradiction.
Hence $9^{x}+31^{y}=z^{2}$ has no non-negative integer solution.
Corollary 3.3 The Diophantine equation $3^{x}+31^{y}=z^{4}$ has no non-negative integer solution where x, y and z are non-negative integer.

Proof: Suppose that there are non-negative integers x, y and z such that $3^{x}+31^{y}=z^{4}$.
Let $u=z^{2}$ then $3^{x}+31^{y}=u^{2}$.
By theorem 3.1 it follows that $(x, y, u)=(1,0,2)$.
Thus, $u=2$ then $z^{2}=2$ it is a contradiction.
Hence $3^{x}+31^{y}=z^{4}$ has no non-negative integer solution.
Corollary $3.4(1,0,2)$ is a unique non-negative integer solution (x, y, z) for the Diophantine equation $3^{x}+961^{y}=z^{2}$ where x, y and z are non-negative integer.

Proof: Suppose that there are non-negative integers x, y and z such that,

$$
3^{x}+961^{y}=z^{2}
$$

or, $\quad 3^{x}+31^{2 y}=z^{2}$.
Let $u=2 y$ then $3^{x}+31^{u}=z^{2}$.
By theorem 3.1 it follows that $(x, u, z)=(1,0,2)$.
Thus, $\mathrm{u}=0$ then $\mathrm{y}=0$.
Hence $(1,0,2)$ is only non-negative integer solution of the Diophantine equation $3^{x}+961^{y}=z^{2}$.

4. Conclusion

In this paper the Diophantine equation $3^{x}+31^{y}=z^{2}$ and $3^{x}+961^{y}=z^{2}$ have been solved. It is found that each equations have exactly one non-negative integer solution for x, y and z and the solution is $(1,0,2)$. The Diophantine equation $9^{x}+31^{y}=z^{2}$ and $3^{x}+31^{y}=z^{4}$ also have been solved and found that no non-negative integer solution where x, y and z are non-negative integer.

References:

D. Acu, On a Diophantine equation, General Mathematics, 15(4) (2007),145-148.
P. Chotchaisthit, Primary Ccolotomic units and a proof of Catalan's conjecture, J. Reine Angeq. Math., 27 (2004),167-195.
J. F. T. Rabago, On Two Diophantine Equation $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$. International Journal of Mathematics and Scientific Computing, 3(1) (2013), 28-29.
J. F. T. Rabago, More on Diophantine Equation of Type $p^{x}+q^{y}=z^{2}$. International Journal of Mathematics and Scientific Computing, 3(1) (2013), 15-16.
B. Sroysang, On the Diophantine equation $3^{x}+5^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 81(4)(2012), 605-608.
B.Sroysang, On the Diophantine equation $3^{x}+17^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 89(1) (2013), 111-114.
A. Shivangi, M. S. Madan, On the Diophantine equation $3^{x}+13^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 114 (2) (2017), 301-304.

[^0]: * Assistant Professor in Mathematics, Department of Arts \& Science, Ahsanullah University of Science \& Technology

